PLEASE REVIEW THE INFO  Experiment

PLEASE REVIEW THE INFO 

Experiment

Pendulum and the Calculation of g

Experiment

Pendulum and the Calculation of g

Lab 6 -Simple Pendulum

Discussion and review

A simple pendulum consists of a mass (“bob”) suspended from a light string of length
L. The bob is pulled sideways such as the string makes with the vertical direction an angle θ less than 150. When is released it oscillates back and forth within a vertical plane, with the period of the pendulum given by: T = 2π

symbol

Description


T

Period of a pendulum to complete one cycle


L

Length of string


g

Acceleration due to gravity: 9.81 m/s2


Procedure

The lab activity uses a simulation developed by the University of Colorado at Colorado Boulder. Click on the link below and choose “Intro”.

Simple Pendulum Click here

1. The length of the pendulum should be set to the following lengths: 0.25, 0.5, 0.75 and 1m.

2. For each length, set the pendulum in motion by displacing the pendulum bob sideways such as the string makes

100 with the vertical direction
.

3. Start the timer when the strings appear to be aligned with the angle. Wait for next alignment and count first oscillation, the next alignment will be the second oscillation and so on. Count out a total of 10 oscillations and stop the timer precisely on the 10th oscillation. Record the total time elapsed for the 10 oscillations.

4. Repeat the previous step a total of 3 times and calculate the average of the three time trials

Tavg

5. Calculate the oscillation period,

T
, by dividing the average time by ten.

6. Calculate the acceleration due to gravity,

g
, for all lengths of the pendulum, using

T2
and the equation:

Length

(m)

Time [Trial 1]

(s)

Time

[Trial 2]

(s)

Time

[Trial 3]

(s)

Timeavg

(s)

T = Timeavg/10 (s)

T2 (s2)

g(m/s2)

gavg(m/s2)

1.00 m

0.75 m

0.50 m

0.25 m

Analysis

1. How is the period of the pendulum changing with length?

2. Why did you measure 10 periods of the pendulum instead of just 1?

3. What do you think the effect of the changing mass will be on the pendulum’s period if the length is fixed? Why?

You can check your assumption by running the simulation. Keep the angle to less than 150.

4. Calculate your percentage error as compared to the accepted value for
g, which is 9.81 m/s2.

% error = [
experimental value – accepted value] × 100

accepted value

2

www.HOLscience.com ©Hands-On Labs, Inc.

1

www.HOLscience.com ©Hands-On Labs, Inc.

image1.png

image4.png

Share This Post

Email
WhatsApp
Facebook
Twitter
LinkedIn
Pinterest
Reddit

Order a Similar Paper and get 15% Discount on your First Order

Related Questions

Effectively communicating with the media and public is an important tool during a disaster. Using the readings/research on the following pandemics: 1918

Effectively communicating with the media and public is an important tool during a disaster. Using the readings/research on the following pandemics: 1918 Spanish Flu, 2009 H1N1 Pandemic, and the Covid-19 pandemic describe the successes and shortcomings of the public information messages communicated. Compare and contrast the public messaging between these

Prepare a slide show presentation (Developing Parent-Teacher Partnerships) that could be used to TRAIN pre-service teachers about the importance of

Prepare a slide show presentation (Developing Parent-Teacher Partnerships) that could be used to TRAIN pre-service teachers about the importance of parent-teacher partnerships and how to form such par Prepare a slide show presentation (Developing Parent-Teacher Partnerships) that could be used to TRAIN pre-service teachers about the importance of parent-teacher partnerships

PLEASE REVIEW THE INFORMATION BELOW . ROUGH DRAFT

PLEASE REVIEW THE INFORMATION BELOW . ROUGH DRAFT SUBMIT TOUR ROUGH DRAFT Your ROUGH DRAFT should include a minimum of a cover page, an introduction of your topic and argument, and a working bibliography with Chicago citations including either footnotes or endnotes. The ROUGH DRAFT must be at least 400